اثرات تغییرات بارندگی بر روی جریانات آب‌های سطحی و دامنه استان تهران
(مطالعه موردی رودخانه جاجرود)

دکترعلیضا شکیبا
استادیار، گروه GIS و سنگین از راه دور، دانشگاه شهید بهشتی
دکتربرروک یاهک
استادیار، گروه جغرافیا، دانشگاه آزاد اسلامی واحد شهریار
زری مرنوران* کارشناس ارشد، اقلیم شناسی در برنامه ریزی محیطی

چکیده
یکی از اثرات احتمالی تغییرات اقلیمی، بررسی میزان تأثیر تغییرات بارندگی بر مقادیر رواناب های سطحی در یک منطقه مطالعاتی می‌باشد. بر این اساس در این تحقیق جهت مطالعه تأثیر این دو پارامتر، حویضه آن‌ها با دخالت گردید. ابتدا داده‌ها ی مربوط به باران و رواناب از طریق روش‌های آماری متدول مورد ارزیابی و همکنی قرار گرفته، سپس دوره آماری مشترک مشخص گردید. جهت بررسی پراکندگی داده‌ها، می‌اندازه‌های آماری

* E-mail: monavarianz@yahoo.com
متدیدی جوین واریانس، انحراف معیار و... محاسبه گردید. همچنین از طریق محاسبه میانگین متحرک، دوره های کم ابی و برابر و به تبع از آن میزان روانادی های حاصله در دو دوره ذکور، مورد بررسی قرار گرفت. یافته به واسطه براساس توزیع مختل مقدار دیپ و بارانگی در دوره های پازگشت مختلف محاسبه گردیده است. در پرسی میزان و شکل ارتباط بین دو متغیر بارانگی و دیپ از معادله همبستگی متغیر رگرسیون استفاده گردید.
نتایج این تحقیق وجود دوره های کم ابی و بر ابی را در مقطع مطالعاتی نشان داد. با این تفاوت که نتایج زمانی حاکی از دوره های کم ابی نسبت به دوره های بر ابی بیشتر بوده است. همچنین در نتایج این تحقیق ارتباط معنی داری بین بارانگی و دیپ در مقطع مطالعاتی مشاهده گردید. ضریب همبستگی و میزان R^2 برای حوزه رودخانه جاکرود به 0.376 0.367 ترتیب می‌باشد.

کلمات کلیدی: باران، روانادی، تغییرات اقلیمی، روش‌های آماری، جاکرود، مدل‌رگرسیون

1. مقدمه
در ارتباط با پارامترهای روانادی و بارانگی مطالعات گسترده ای در سطح جهان و ملی انجام شده است و هر کدام مطالعات با هدف که داشته‌اند از مدل‌های مختلفی استفاده نموده اند و به طور کلی در اکثر مطالعات تحقیقاتی نشان داده شده که با تغییر در میزان بارانگی، عناصرهیدرولوژیکی از جمله روانادی های سطحی دستخوش تغییر شده اند. مناسب با محیط و منفی بودن تغییرات در بارانگی میزان حجم آب‌های سطحی رودی کاهش یافته است. این این شرایط در زمانی صادق است که فقط به پارامتر بارانگی و روانادی اشاره شود.

رجب (1989)، با استفاده از مدل‌های AWBM و SimHYD در منطقه استرالیا به این
نتیجه رسیده است که اگر بارانگی تغییر نماید دو برابر روانادی تغییر می‌کند.
براسون و همکاران (1972)، معتقدند که ریزه‌های جوی در مقایسه با ساپر و یورگن
های آب‌خیز تأثیر بیشتری بر روانادی آن دارد و مهترین علت تفاوت جریان آب در مناطق

1. Reger
2. Branson et al
3. Nej et al
4. Begin
مختلف می‌باشد. در ایجاد رواناب از یک بارندگی، شدت بارندگی مهم‌تر از میزان آن است. بطوری که یک باران شنید در مقایسه با بارانی هم مقدار و حتی بیشتر، کمتر از آن ممکن است رواناب بیشتری ایجاد کند.

کیلومتر مربع، واقع در عربستان سعودی نشان داده است که در هر آبیاری با افزایش میزان سطح بر روی همسایگان جوی، مقدار رواناب نیز فاقدی می‌یابد.

تحقیقات وی مشاهده می‌شود که روند خانه‌های پرشرکت در مراقبه با انواع کم شیب از

آب‌های بیشتری بخوردارند.

رضایی و عبدالهی (1382). در بررسی باران و رواناب هویه‌ی آب‌زیر شهربان ماسوله، گیلان بایان نموده‌اند، شرایط توپوگرافی و فیزیوگرافی هویه باعث شده‌اند تا میزان رواناب هویه در حد بالایی قرار گیرد. همچنین تخمین تبخیر بوشی گیاهی هویه شامل جنگلی و مرتعی که بر اثر بی‌توحی صورت پذیرفته، خود عاملی در کاهش رواناب محض می‌گردد در طی سالهای گذشته و احداث راه‌های متعدد به عموم ارتباط جنگلی و مرتعی می‌گذند و قطع درختان جنگلی جهت ساختن خانه‌ها، گاو‌سراها، صنایع دستی و تخریب اراضی موضوعی اثر چراز مفرط از جمله عواملی هستند که در تشکیل رواناب هویه نقش دارند.

پژوهشکده هوشمندی تهران (1381) در گزارش نهایی بروزه آشکارسازی تغییر اقلیم در ایران، در سال 1378 آغاز گردیده، پرداخته است و حاصل کار را پس از بررسی های اولیه درگزارشی تحت عنوان تغییرات اقلیمی هر ایستگاه بصورت نقطه ای بیان نموده و به یک جمع بندی کلی رسیده است. هدف از تهیه این گزارش، ارائه نتایج بست‌آمده از تحلیل آماری پارامترهای
ایمی ایستگاه‌های هویوناسی کنترل آشکار سازی تغییرات اقلیمی با توجه به وضعیت ایستگاه‌ها می‌باشد.

هدف از مقاله حاضر نیز بررسی تاثیر پارادگم بر روی دیب رودخانه چادرد محیط باشد. پیشنهاد هدف تحقیق ذکر شدکه خصوصیات جغرافیایی و فیزیوگرافی جریان واحد بر گستره روستایه مولود بودین مفهوم منحصر به فرد.

از هر دو مورد ذکر می‌گردد، حوضه ایرانز رودخانه چادرد با مختصات جغرافیایی "43/9
30° 51' TA 9° 39' 1/4° طول شرقی و "38° 23' 40' TA 7° 35' عرض شمالی از زیر جریان به ایران مرکزی می‌باشد. از شمال و شمال شرق به حوضه ایرانز دریا خزر، از شرق به حوضه ایرانز استان ار قبلاً و از غرب به حوضه ایرانز رودخانه چارد و از جنوب به حوضه ایرانز گاوخویی محدود می‌شود. رودخانه ایرانز از نوع رودخانه‌های دانه‌هستند و اسکاخ برخی از آنها عبارتند از: گرمابد، لالون، شمشک، شکر، میگون، امام‌فرخه، لواسان و آهار.

مطالعات زمین‌شناسی حوضه نشان می‌دهد، بیشتر مصادح آن مربوط به سازند کرج در دوران سوم زمین‌شناسی می‌باشد در لیتوژنی سازند کرج. بیشتر سطحی از نوع سنگ‌های آهکی، توف‌های سبز رنگ، مواد رسوبی شیل و آهک می‌باشد و از خصوصیات این سازند شبیه سپهر زیاد دامنه‌ها و یوشش‌های ضیف می‌باشد. گسل‌های اصلی و فرعی فراوانی، زمین‌را به قطعات مختلف شکسته که حاصل حاصل‌های قطع‌های دو اول زمین‌شناسی است. به طور کلی زمین‌های دوران اول برای فشارهای تکنوتپیک بروز زمین‌های دوران سوم را نشان می‌ده، این زمین‌شناسی با گسل مشاهده نشان‌داد.
اختلاف بارندگی، ارتفاع ویژه تشکیلات زمین، خاک و توربوفلات حوضه موجب پیدا شدن نوع گونه‌ای گیاهی خاصی در حوضه شده است. در ارتباط با خصوصیات اقلیمی می توان به این موارد اشاره نمود:

توده هواي سپيري در بازار وارد ایران می شود و بیشتر مشاء بارندگی های خزر از این توده هوایی و توده هوای مدیرانه ای که در زمستان از طریق گربه و جنوب گربه وارد ایران می شود در خوردن با این توده هواي سپيري یک جهه و سیل را در کل ایران ایجاد می نماید. و ریزش های وسیع زمستان را به دنبال دارد. می توان بارندگی های این زمان در حوضه را به این توده ها اختصاص داد.

توده هواي جنوب حاره: در قسم سنگ سیستم حاکم بقسمت اعظم کشور ایران پرفشار جنوب حاره است که از منطقه جنوب ایران تا پایین کوههای البرز درجاپی که حوضه آبریز مورد مطالعه قرار دادند کشیده می شود.

بادهای غربی: در ایران عقب تشییع بادهای غربی تا عرضهای ۲۸ درجه است. از این روش بخشی از هواشناسان معتقدند که بارندگی های باتشافت ارتفاعات ایران بخصوص مناطقی یا پلی آبی پلیان و البرز که حوضه آبریز مطالعه نیز در این قسمت واقع است بیشتر به دلیل نقص بادهای غربی است.

روش های مختلف تعیین اقلیم عموما براساس بارندگی و درجه حرارت می باشند. هر یک از این روشهای نوع خاصی از تقسیم بندی را ارائه داده اند. از این روشهای متداول، در این مقاله شرایط اقلیمی منطقه مطالعاتی دو روش آمپریه، دومارتین مورد بررسی قرار می گیرد. در اقلیم نماي آمپریه، زیرحوضه ها در اقلیم ارتفاعات، سرطوب سرد و خلبان سرطوب قرار دارند و در روش دومارتین آدر زیرحوضه ها مطالب در اقلیم بسیار سرطوب می باشد.
تصویر ۱- انحراف قسمتی از آب حوضه سد لاور به سمت حوضه سد

تصویر ۲- نمایی از دریاچه سد لیان

خصوصیات فیزیوکرایی حوضه های ابریز را می توان به دو کروه کلی تقسیم بندی کرد که عبارتند از: یکی و بلوکی و نفوذپذیری. این دو ویژگی از عوامل مؤثر بر ایجاد رواناب و سیل می باشند. نمایه های یکی و بلوکی حوضه شامل سطح، شیب، الگوی رودخانه ای و نمایه نفوذپذیری شامل توان جذب آب به داخل خاک و ذخیره رطوبت در آن می باشد. اما اگر باخوانی عوامل مؤثر در هیدرولوژیک حوضه های ابریز را برای بسیار زیاد خواهند بود و حداقل ۸گره مستقل زیر را می توانیم از پسپری امکان به دست آوریم:

۱-خصوصیات هندسی حوضه ۲-خصوصیات خاکهای حوضه ۳-بیشتر گیاهی ۴-خصوصیات آب شناسی ۵-خصوصیات زمین شناسی ۶-آب و هوا ۷-بار بارسوب ۸-عوامل انسانی. هرچند عوامل ۲ تا ۸ در مورد یک حوضه اثرات بسیار بارزی بر حجم
روان‌ها و خصوصیات سیال‌ها درد ویژه‌های هندسی حوضه‌ها نیز در آب‌های بزرگ‌های اصلی به‌دلیل ساختار زمین

الگوی حوضه آب‌زای رودخانه جاجرود در رودخانه‌های اصلی به‌دلیل ساختار زمین

شناسی به‌صورت مواری بوده و الگوی تخلیه روان‌ها آن نیز از همین خاصیت پیرامون کنار شکل‌بندی‌ها در سطح حوضه شکل نیمه موازایی می‌باشند، اما در زیر حوضه

های آن بی‌صرفه‌تر نشسته می‌باشند.

در حوضه‌های جاجرود دریالایی روش‌های نیکاتر ده قسمتی از آب حوضه سد لار را به

سند حوضه سد لیان جهت رفع کمبود آب در شهرتهران، منحرف نموده‌اند.

تغییرات افزایش بارندگی گاهی سبب بروز سیال‌هایی می‌شود همچنین در جهت

نیز الوی سبب کاهش روان‌ها، اختلال در کشاورزی، آب شرب، ... می‌گردد. واقع شدن

این حوضه در استان تهران و تأمین بخشی از آب شرب شهر تهران از این حوضه و پیش

بینی سالهای کم آبی و پرآبی در آینده در جایگاه خاصی قرار دارد.

هدف کلی از این مطالعه بررسی وضعیت باران، روان‌ها و توضیح آنها در رابطه با

تغییرات ملی در حوضه آبخز رودخانه جاجرود می‌باشد. از دیگر اهداف ملی بر این

مطالعه بررسی تغییرات سطحی در ارتباط با تغییرات بارندگی و تغییرات تغییرات، بررسی سهم باران در رویکرد و ارائه مدل جهت پیش‌بینی واکنش منطقه

مطالعاتی نسبت به تغییرات آینده باران می‌باشد.

۲. داده‌ها و روش‌ها

جهت بدست‌آوردن خصوصیات توزیع‌های حوضه‌ای نشان‌داده‌ها چنین توزیع‌های حوضه‌ای با

مقیاس ۳۵۰۰۰۰۰:۱ تهیه گردید. سپس در نرم‌افزار GIS رقم‌های شده و محدوده حوضه

آب‌زای و بزرگ‌های اصلی به‌منظور شناسایی و کلیه خصوصیات توزیع‌های آب‌زای از قبلی مساحت،

محیط، طول آب‌زایی اصلی، حداقل و حداکثر ارتفاع، تعداد آب‌زایی‌ها، نسبت اشباع، شبیه

و ... محاسبه گردید. باتوجه به آمار استقامت‌های هیدرومتری در جدول (۱) ابتدا داده‌های

بارندگی و دیگر مورد بررسی قرار گرفته و کلیه این مشخصات بین دی‌ها و باران برای

آن در نظر گرفته شد. استقلال‌های رودک و لیان به‌دلیل این‌جای آب‌زای دیدرین در سال‌های

پیش‌تر انتخاب گردیده‌اند.
جهت بررسی بارندگی و دبی به صورت ماهانه و سالانه، آمار سالهای ۱۳۸۰ تا ۱۳۵۱ استفاده گردیده‌ایک دوره آماری ۳۰ ساله، جهت مقایسه داده‌های بارندگی و رواناب به دلیل نیاز دما در محاسبه رواناب و موجود بودن آن در همه سال‌ها از داده‌های سال‌های ۱۳۸۷ تا ۱۳۸۲ استفاده گردید و داده‌های بارندگی و رواناب در یک دوره ۱۷ ساله مورد مطالعه قرار گرفت. پس از بررسی داده‌ها و تعمیم داده‌های پرتر از آزمون اوت لای انجام گرفته و داده‌های پرتر از میانگین داده‌ها خارج گردید. در ادامه باید همگنی داده‌ها بازنیابی شود که بهینه منظور از آزمون جرمی مضمون و آزمون توانی با دنی از استفاده گردید. جهت بررسی نواصق آماری از روش ایستگاه‌های معرف که دارای آمارهای همگنی می‌باشد، استفاده گردید.

سپس با استفاده از همبستگی خطی و تناسب، آماره‌ها را برای ایستگاه ناقص در سال آماری داده می‌نماییم. همچنین داده‌های آماری بارندگی و دبی از نظر مقدار نیز مورد بررسی قرار گرفت. ابتدا میانگین داده‌ها و پس از آن شاخص بارندگی و دبی برای سال‌های خشک‌سالی و رسالی برسی گردید.

جهت مشاهده بارندگی آماری داده‌ها از واریانس، انحراف معیار، دامنه تغییرات، چولگی و ضریب تغییرات استفاده گردید. سال‌های پاییز و کم از طرف متحرک ۵ ساله و شاخص بارندگی مشخص شده و جهت محاسبه مقدار بارندگی ودبی در دوره Hyfa های بارگشته ۴.۵، ۱۰، ۲۵، ۵۰ و ۱۰۰ ساله توزیع آماری آماری در نرم افزار Minitab سطوح محاسبه و پهپاد توزیع را برای آن در نظر گرفته و در نرم افزار اطلاعات جهت داده‌های موجود در ضریب اطمینان ۹۵ درصد محاسبه گردید.

نمودارهای مقایسه ای بین باران و دبی روزانه سال ۱۳۸۰ بارندگی و دبی ماهانه ۱۳۷۸، بارندگی و دبی سالانه طی سالهای ۱۳۸۰، بارندگی و رواناب سالانه طی سالهای ۱۳۸۰، دامنه تغییرات روزانه پاران و دبی طی سالهای ۱۳۸۰، بارندگی و میانگین دمای ماهانه طی سالهای ۱۳۸۰، بارندگی و دبی طی سالهای ۱۳۸۰، طی سالهای ۱۳۸۰، بارندگی و دبی طی سالهای ۱۳۸۰.
جدول 1- مشخصات استخراج‌های باران سنگی، تبیخ‌رسنگی و هیدرومتری حوضه آبیز رودخانه جاجرد (سدن‌تیان)

نام	سنگ‌های سستا	جاجرد	سونک	چاه	چاه‌های چالشانی	چاه‌های حاصله	چاه‌های پرورانش	چاه‌های مستحکم	چاه‌های ناامن															
1	آباده	گردشی	ماهی	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	
2	جاجرد	ماهی	ماهی	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	
3	امیرزی	ماهی	ماهی	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸	۱۴۹۸

توجه: اطلاعات و سال‌های آخری موجود در بند مربوط به هر چهارده میزان مورد بررسی و در جدول ذکر شده‌اند.
مواد5- میانگین متحرک 5 ساله در ایستگاه رودک

مقدار باران و دبی در دوره های بارگذشت ۵، ۱۰، ۲۰، ۲۵، ۵۰ و ۱۰۰ ساله با استفاده از توزیع‌های آماری در نرم‌افزار Hyfa محاسبه‌ای از بین توزیع‌های توزیع‌های LOG به و توزیع‌ها بارگذشت NORMAL در بارگذشت ROD، توزیع در بارگذشت NORMAL-3 و دبی ROD و توزیع LOG-Pearson-3 در دبی گذشت از میان سایر توزیع‌ها بذیرفتند شده و انتظار من رود داده‌های ذکر شده در دوره های بارگذشت ۵، ۱۰، ۲۵، ۵۰ و ۱۰۰ ساله تکرار شوند.

جدول ۵- توانای بارگذشت ودی سالانه ایستگاه‌های، ROD و ROD

<table>
<thead>
<tr>
<th>دوره بارگذشت</th>
<th>نام ایستگاه</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۲۰</th>
<th>۱۰</th>
<th>۵۰</th>
<th>۱۰۰</th>
<th>نوع توزیع</th>
<th>نوع توانای</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROD</td>
<td>۴۱-۱۱۷</td>
<td>۸۸۸.۸۳۶</td>
<td>۸۷۸.۸۳۲</td>
<td>۸۶۸.۸۳۸</td>
<td>۸۵۸.۸۳۴</td>
<td>۸۴۸.۸۳۰</td>
<td>۸۳۸.۸۲۶</td>
<td>۸۲۸.۸۲۲</td>
<td>۸۱۸.۸۱۸</td>
<td>۸۰۸.۸۱۴</td>
<td>LOG-NORMAL-3</td>
<td>بارگذشت</td>
</tr>
<tr>
<td>ROD</td>
<td>۴۱-۱۱۹</td>
<td>۹۷۸.۸۴۶</td>
<td>۹۶۸.۸۴۲</td>
<td>۹۵۸.۸۳۸</td>
<td>۹۴۸.۸۳۴</td>
<td>۹۳۸.۸۳۰</td>
<td>۹۲۸.۸۲۶</td>
<td>۹۱۸.۸۲۲</td>
<td>۹۰۸.۸۱۸</td>
<td>۸۹۸.۸۱۴</td>
<td>NORMAL</td>
<td>توانای</td>
</tr>
<tr>
<td>ROD</td>
<td>۴۱-۱۱۶</td>
<td>۹۹۸.۸۴۶</td>
<td>۹۸۸.۸۴۲</td>
<td>۹۷۸.۸۳۸</td>
<td>۹۶۸.۸۳۴</td>
<td>۹۵۸.۸۳۰</td>
<td>۹۴۸.۸۲۶</td>
<td>۹۳۸.۸۲۲</td>
<td>۹۲۸.۸۱۸</td>
<td>۹۱۸.۸۱۴</td>
<td>NORMAL</td>
<td></td>
</tr>
<tr>
<td>ROD</td>
<td>۴۱-۱۱۹</td>
<td>۹۸۸.۸۴۶</td>
<td>۹۷۸.۸۴۲</td>
<td>۹۶۸.۸۳۸</td>
<td>۹۵۸.۸۳۴</td>
<td>۹۴۸.۸۳۰</td>
<td>۹۳۸.۸۲۶</td>
<td>۹۲۸.۸۲۲</td>
<td>۹۱۸.۸۱۸</td>
<td>۹۰۸.۸۱۴</td>
<td>LOG-PEARSON-3</td>
<td></td>
</tr>
</tbody>
</table>
نمودار 6- رابطه بارندگی و دیب روزهای سال 1380 ایستگاه رودک

نمودار 7- رابطه بارندگی و دیب ماههای سالهای 1384-1376 ایستگاه رودک

نمودار 8- رابطه بارندگی و دیب سالهای ایستگاه رودک
نمودار ۹ - رابطه بارندگی و روانه سالانه ۱۳۸۷ ایستگاه رودک

نمودار ۱۰ - رابطه دامنه تغییرات روزانه بارندگی با دامنه تغییرات روانه دبی سالانه ۱۳۸۵ ایستگاه رودک

نمودار ۱۱ - رابطه دامنه تغییرات روزانه بارندگی با دامنه تغییرات روانه دبی سالانه ۱۳۸۶ ایستگاه رودک

نمودار ۱۲ - رابطه بارندگی و میانگین دمای سالانه ۱۳۸۷ ایستگاه لنیان
نمودار(۶) رابطه بارندگی و دبی روزانه سال ۱۳۸۰ یا استگاه رودک را نشان می‌دهد.

جانبه مشاهده می‌گردد در ماههای استفاند ارتباط به فوروردین بیشترین بارش را در رودک داریم.

- دبی غیر از بارندگی حاصل ذوب بر فر در منطقه، خارج شده ای‌های زیر زمینی به
صورت چشمی می‌باشد از اینکه باران در منطقه وجود ندارد دبی همچنان
دبی‌اند. دامنه رودخانه مشاهده می‌گردد. ولیکن با وجود باران منحنی دبی بعد از
بارندگی صعود می‌نماید و این رابطه مستقیم بین دبی و بارندگی را بیان می‌نماید.

نمودار (7) رابطه بارندگی و دبی ماهه‌ای در سالهای ۱۳۷۷ تا ۱۳۸۲ در استگاه رودک
نشان می‌دهد. با تغییر دقيق به نمودار مشخص می‌شود که به بعد از اوج باران اوج دبی
مشاهده می‌شود و منحنی دبی سیر متوالی می‌گیرد. بیشترین میزان دبی در ماههای
فوروردین و ارتباطات مشاهده می‌گردد که این مطلب می‌تواند به دلیل افزایش دما و
دبی برای هم باشد ولیکن با اوج نیز ارتباط مستقیم دارد. دکتری که از این نمودار
دریافت می‌شود روند مثبت باران و دبی در سالهای ۱۳۸۰ تا ۱۳۸۲ باشد و می‌توان
گفت در این سالها بارندگی سیر متوالی داشته و جزء سالهای پایین محاسبه می‌شوند.

چنانچه در نمودارهای (۶) (۷) مشاهده می‌گردد بارندگی با رواناب و دبی رابطه
مستقیم دارد و با افزایش بارندگی میزان دبی نیز مطابع محسوسی تغییر می‌کند. این
رابطه در رواناب کامل است.

- دامنه تغییرات روزانه بارندگی نسبت به دبی از نوسان بیشتری برخورد است.
- پس از اوج منحنی دامنه تغییرات روزانه بارندگی، منحنی دامنه تغییرات روزانه
بارندگی اوج می‌گیرد.
- بیشترین دامنه تغییرات بارندگی در ماههای سرد سال صورت می‌پذیرد.
- همچنین با بعد از اوج منحنی دامنه تغییرات روزانه بارندگی با اوج منحنی دامنه
تغییرات روزانه دبی مواجه می‌شوند. که این نکته خود همبستگی داده را بیان می
نماید.
- هیستوگین بین داده‌ها بر اساس مداه‌های آماری محسوبی شده، رابطه معنی دار و مستقیمی را نشان می‌دهد.

نموندار (۱۲) رابطه بارندگی و میانگین دمای سالانه را در سال‌های ۱۳۸۴ تا ۱۳۸۳ در این استفاده لیوان نشان می‌دهد.

- چنانچه در این نموندار مشاهده می‌شود حداکثر میانگین دما در سال‌های ۱۳۸۰ تا ۱۳۸۳ از دمای صفر درجه سانتی‌گراد فاصله گرفته و می‌توان گفت افزایش دما را در منطقه داشته‌ایم.

- در این سال‌ها با افزایش دما با کاهش بارندگی رو به روی می‌شود و این رابطه معکوس بین باران و دما در مدت آماری که در جدول ۶ آمده است، به خوبی نشان داده شده است.

- تغییرات دما نسبت به تغییرات بارندگی بسیار تاچیز است و و خط منحنی دما در نموندار تقریباً یکنواخت می‌باشد ولیکن تغییرات بارش بسیار نامنظم است که این ناشی از خصوصیات و ماهیت بارندگی (پراکندگی) می‌باشد.

جدول ۶- هیستوگین بین پارامترهای اقلیمی و دبی ایستگاه رودک

<table>
<thead>
<tr>
<th>تعادل سال آماری</th>
<th>ضریب هیستوگین</th>
<th>ضریب تبعین R²</th>
<th>سالهای هیستوگین</th>
<th>داده‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارش - تبخیر و تعرق</td>
<td>۱۲۹۰.۸۱۷۷ + X ۰.۰۴۴</td>
<td>۰.۷۱۰</td>
<td>۱۶۵۰۰۳</td>
<td>۰.۸۱۷۷ + X ۰.۰۴۴</td>
</tr>
<tr>
<td>بارش - دما</td>
<td>۰.۷۱۰</td>
<td>۱۶۵۰۰۳</td>
<td>۰۰۰۰۰۹۳۹</td>
<td>۰.۸۱۷۷ + X ۰.۰۴۴</td>
</tr>
<tr>
<td>تبخیر - دما</td>
<td>۰.۷۱۰</td>
<td>۱۶۵۰۰۳</td>
<td>۰۰۰۰۰۹۳۹</td>
<td>۰.۸۱۷۷ + X ۰.۰۴۴</td>
</tr>
<tr>
<td>بارش - دیب</td>
<td>۰۰۰۰۰۹۳۹</td>
<td>۰.۸۱۷۷ + X ۰.۰۴۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارش - دیب</td>
<td>۰۰۰۰۰۹۳۹</td>
<td>۰.۸۱۷۷ + X ۰.۰۴۴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منفی بودن شیب خط در معادلات نشان می‌دهد ضریب هیستوگین است در نتیجه با افزایش یک پارامتر، پارامتر دیگر کاهش ییدا می‌کند. و در جدول (۶) فقط بارش و دبی هیستوگین مستقیم دارند، با افزایش بارش اندازه میزان دبی نیز افزایش ییدا کند. چنانچه در نموندارهای (۶) الی (۱۱) مشاهده نمود.
میزان CN متعلقه را با استفاده از گزارشات هیدرولوژی زیر حوضه‌ها از طریق میانگین وزنی محاسبه نموده و مقدار آن برای زیر حوضه رودک 80 و حوضه بزرگ سد لتیان 77 در نظر گرفته شد. ضریب رواناب در زیر حوضه رودک 0/36 ضریب تغییرات 7/46-126، ارتفاع رواناب 1194 هنچ و حجم رواناب 1750 میلیون متر مکعب، حجم آب جاری شده 8585 میلیون متر مکعب، ارتفاع آب جاری شده 9285999 سانتیمتر به طور میانگین می‌باشد. با استفاده از معادله گرادیان پارش خطوط هم پاران رسم نموده (نقشه شماره 2)، چنانچه مشاهده می‌گردد با افزایش ارتفاع میزان بارندگی نیز افزایش ییده می‌کند. سیس میزان بارندگی و حداکثر توانبارندگی در هریک از زیر حوضه‌ها محاسبه گردیده (جدول‌های شماره 7 و 8).

نمودار 12- گرادیان پارش در حوضه آبخیز رودخانه چارود
نقشه 7- خطوط هم باران در حوضه آبریز جاری‌تر

جدول 7- محاسبه میانگین بارش و حجم بارش دروازه‌های هیدرولولوژیک حوضه آبریز رودخانه جارود

<table>
<thead>
<tr>
<th>نام واحد هیدرولولوژیک</th>
<th>ارتفاع متوسط زمین (M)</th>
<th>مساحت</th>
<th>م妖怪ه کردار بارش</th>
<th>حجم بارش میلی متر مکعب</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>28.3</td>
<td>83</td>
<td>y = 0.2606x + 101.86</td>
<td>832</td>
</tr>
<tr>
<td>L2</td>
<td>28.8</td>
<td>94</td>
<td>y = 0.2606x + 101.86</td>
<td>801</td>
</tr>
<tr>
<td>L3_1</td>
<td>27.8</td>
<td>43</td>
<td>y = 0.2606x + 101.86</td>
<td>677</td>
</tr>
<tr>
<td>L3_2</td>
<td>193.1</td>
<td>71</td>
<td>y = 0.2606x + 101.86</td>
<td>501</td>
</tr>
<tr>
<td>L4</td>
<td>191.3</td>
<td>31</td>
<td>y = 0.2606x + 101.86</td>
<td>401</td>
</tr>
<tr>
<td>L5</td>
<td>229.8</td>
<td>53</td>
<td>y = 0.2606x + 101.86</td>
<td>379</td>
</tr>
<tr>
<td>L6</td>
<td>229.3</td>
<td>33</td>
<td>y = 0.2606x + 101.86</td>
<td>333</td>
</tr>
<tr>
<td>L7</td>
<td>277.1</td>
<td>25</td>
<td>y = 0.2606x + 101.86</td>
<td>270</td>
</tr>
<tr>
<td>L8</td>
<td>228.9</td>
<td>43</td>
<td>y = 0.2606x + 101.86</td>
<td>322</td>
</tr>
<tr>
<td>L9</td>
<td>248.2</td>
<td>74</td>
<td>y = 0.2606x + 101.86</td>
<td>248</td>
</tr>
<tr>
<td>L10</td>
<td>273.4</td>
<td>157</td>
<td>y = 0.2606x + 101.86</td>
<td>486</td>
</tr>
<tr>
<td>رودک</td>
<td>246.2</td>
<td>438.4</td>
<td>y = 0.2606x + 101.86</td>
<td>821.6</td>
</tr>
<tr>
<td>کل حوضه</td>
<td>255.2</td>
<td>701.72</td>
<td>y = 0.2606x + 101.86</td>
<td>3283.9</td>
</tr>
</tbody>
</table>
جدول 8- توزیع حداکثر بارندگی 24 ساعتی دروازه‌های هیدرولوژیکی حوضه ابریز رودخانه جاجرود

<table>
<thead>
<tr>
<th>دوره بارش (میلی‌متری)</th>
<th>ارتفاع متوسط (متری)</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>480</td>
<td>28</td>
<td>61</td>
<td>68</td>
<td>110</td>
<td>118</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L2</td>
<td>20</td>
<td>37</td>
<td>68</td>
<td>65</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>160</td>
</tr>
<tr>
<td>L3_1</td>
<td>388</td>
<td>44</td>
<td>72</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L3_2</td>
<td>388</td>
<td>44</td>
<td>72</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L4</td>
<td>1931</td>
<td>60</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L5</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L6</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L7</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L8</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L9</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>L10</td>
<td>896</td>
<td>50</td>
<td>70</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>روکش</td>
<td>388</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>110</td>
<td>112</td>
<td>133</td>
<td>170</td>
</tr>
</tbody>
</table>

مقدار شدت و مدت با استفاده از فرمول‌های رابیج محاسبه و متحفی آن در دوره‌های بارش‌گذاری 5، 10 و 100 ساله رسم گردید.

جدول 9- مقدار شدت، مدت و فراوانی رگی‌ها کوتاه مدت در واحد هیدرولوژیک تلبان

<table>
<thead>
<tr>
<th>زمان (دقیقه)</th>
<th>دوره بارش (سال)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>2.39</td>
</tr>
<tr>
<td>30</td>
<td>0.01</td>
</tr>
<tr>
<td>45</td>
<td>0.01</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
</tr>
<tr>
<td>90</td>
<td>0.01</td>
</tr>
<tr>
<td>120</td>
<td>0.01</td>
</tr>
<tr>
<td>180</td>
<td>0.01</td>
</tr>
<tr>
<td>240</td>
<td>0.01</td>
</tr>
<tr>
<td>300</td>
<td>0.01</td>
</tr>
<tr>
<td>360</td>
<td>0.01</td>
</tr>
</tbody>
</table>
در جدول زیر، نتایج تест T و فاصله احتمال سنجش از تغییرات طولانی کننده های تغییرات سنجش انجام شده است.

<table>
<thead>
<tr>
<th>شدت بارندگی</th>
<th>میزان زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت بارندگی 1</td>
<td>2.000</td>
</tr>
<tr>
<td>شدت بارندگی 2</td>
<td>7.37</td>
</tr>
<tr>
<td>شدت بارندگی 3</td>
<td>7.39</td>
</tr>
<tr>
<td>شدت بارندگی 4</td>
<td>7.37</td>
</tr>
<tr>
<td>شدت بارندگی 5</td>
<td>7.39</td>
</tr>
</tbody>
</table>

در این تحقیق، تعداد نمونه استاندارد 'n' برای تغییرات طولانی کننده های تغییرات سنجش انجام شده است.

توضیحات اضافی
جدول ۱۱- پیش بینی دیپ با استفاده از مدل زگریسون در استخراج رودک در سال‌های ۱۳۸۱-۱۳۸۳

<table>
<thead>
<tr>
<th>سال</th>
<th>پارش (میلی لیتر)</th>
<th>دیب مشاهده (میلی لیتر)</th>
<th>مدل (مترمکب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۱</td>
<td>۹۱۴</td>
<td>۱۱.۵۶۷</td>
<td>۱۲.۶۵۳</td>
</tr>
<tr>
<td>۱۳۸۲</td>
<td>۶۲۲.۵</td>
<td>۸.۹۲۹</td>
<td>۸.۱۸۴۵۲</td>
</tr>
<tr>
<td>۱۳۸۳</td>
<td>۷۵۴</td>
<td>۹.۹۶۵</td>
<td>۹.۹۱۱۷</td>
</tr>
</tbody>
</table>

این مدل با توجه به نتیجه ضریب اطمینان قابل پذیرش است، و دیب ها را با اطمینان ۹۵٪ و ۹۹٪ می‌توان پذیرفت.

نمودار ۱۵: داده‌های استخراج شده از مدل را همراه با نمودار متحرک سال برای سال‌های اینه از سال ۱۳۶۵ به بعد پیش بینی نموده است. در نمودار داده های استخراج شده از مدل سیر معادل دارند.

نمودار ۱۵ میانگین متحرک ۵ سال برای داده‌های استخراج از مدل استخراج رودک به همراه روند تغییرات

۴. جمع بندی و پیشنهادات
- پس از بررسی خصوصیات فیزیوگرافی و جغرافیایی و پارامترهای اقیمی، و علی رغم بالا بودن تحقیر در منطقه نهایتا به این نتیجه رسیدیم که پارامترهای اقیمی نقش مهمتری را در روند تغییرات دیب دارند.
- تغییرات بارندگی و رواناب با پارامترهای خاصی در ارتباط است، ازجمله تغییرات کاربری زمین، از تصاویر ماهواره ای می‌توان تغییرات کاربری زمین را مشاهده کرد.
نمودگری این تغییرات را با تغییرات بارندگی و رواناب مقایسه نمود. رویکرد که می‌تواند از انجام داده وابسته به داده‌های آماری می‌باشد و حال اگر تغییراتی در منطقه صورت گرفته باشد، عناوین مثل جنگلهای این دنباله تبدیل به جنگلهای زیردندان و مرطوب شده باشد ممکن است بر روی خروجی رواناب تاثیرگذار را داشته باشد و با تغییرات کاربردی زمین با تغییرات رواناب مورد بررسی قرار گیرد.

- در این تحقیق تغییرات بارندگی از طریق داده‌های تابعیت به دست و براساس بارندگی هایی ۳۰ ساله مورد بررسی قرار گرفته در این مطالعه. هدف دقت کار بهتری برد. بر روی خروجی رواناب که از مدل‌های تغییرات بارندگی RCM11 حاصل می‌شود، در مقایسه ناحیه‌ای با کارگر نفت، آن را مورد بررسی قرار داده.

- در مواردی که میزان همبستگی بین پارس و دیگر کم است، احتمالی می‌رود به عوامل دیگری همچون: زمین شناسی، جنس سه‌گاه، جوان بودن، شکل‌تکامل زمین شناسی، سیب زیاد، کم بودن فاصله یک بارش با تر بارش دیگر، عدم وجود ویلکش‌گیلی، مناسب، کم بودن عمق خاک، وجود گسل‌های فراوان در منطقه مربوط باشد.

- تکمیل شبکه‌های زیرخاکی، کننده بودن فاصله مرکزی نشان می‌دهد که تغییرات رواناب، میزان تغییرات منطقه مطالعه می‌تواند از رسوخی باران در سطح بارشی کم است و این افساری اقیاناتی جهت حفظ رواناب و نفوذ آن در خاک به دست صورت پیدا می‌دهد.

- باگاهی به وضعیت نفوذ‌دیرنه و این در پی و افزایش دسته‌بندی‌های سنگی و آفرینی حوضه می‌توان گفت که منطقه مورد مطالعه از نظر سیل‌خوردگی به‌طور کلی و زمین شناسی انتخاب شده است و دچار کاهش رواناب و نفوذ است. نشان دهنده آسیب‌پذیری باران از حوضه ها خارج می‌گردد. خواسته‌های اقیاناتی این امر متوقف از جمله عملیات انجیرداری (کریس گارسیا) چل‌گویی از جریان‌های پیچیده، عملیات حفاظت خاک، فشین کشی در باوری دست‌توه‌های سنگی اسپیس پدیر، احداث بندگه‌های گابونی به‌همین جریان در مورد های مستعد به‌همین، پیشنهاد احداث فنس‌های

11-Regional Climate Model
فولادی از جنس ریل‌های قطار در سطوح شیبدار به‌پرمی خیز، به‌ویژه وضعیت مران‌ها با طرح‌های بزرگ‌اشی، پُل‌کاری، بانک‌بندی، که کاری می‌تواند به هر روان‌پای موتر باشد.

- به‌ویژه وضعیت کنست و بهره‌برداری نجوم استفاده از اراضی بر روی الخصوص زراعت نیز

- از عوامل مهم تشکیل‌فرساش در حوضه‌های می‌باشد. در این خصوص زراعت در اراضی شیبدار، شخم در چهت شیب و روش‌های ایبایی از مهارت و عوامل تشکیل‌فرساش می‌باشد. لذا در این خصوص نیز پیشنهاد اصلاح شخم در اراضی شیب هر ۵۰ هکتار تا ۱۲ هکتار مطرح می‌گردد.

نتایج حاصل از مطالعات پایه و نیز کسب اطلاعات میدانی مشخص نموده که منطقه مورد مطالعه از نظراین سیاسی برخوردار می‌باشد. از لحوم احتمال تاسیسات مناسب چهت استفاده از این منابع آبی را آشکار می‌سازد. در این راستا سد لیزی زندی علی ابای از مهای ساخته است. همچنین با توجه به رسوپ زایی منطقه که در مطالعه فرسایش حدود ۳۶۰۰۰ هزار تن در سال برآورد گردیده، با توجه به همیلت بحث فرسایش که سایر مسائل و مشکلات نظیر سیل، تخرب و کاهش تولید مران‌ها و ... همه تحت تأثیر آن می‌باشد برنامه‌های کنترلی باید محداً قرار گیرد.

- چهت حفظ روان‌پای اگر طرح صورت پذیرد که میزان تبخیر را تغییر دهد این امر موجب تغییر در آب‌سیستم می‌شود لذا هر نوع تغییر در اجرای جرخه هیدرولوژی باید با احاطه کامل و مطالعه گسترده صورت پذیرد.

- تعداد کم ایستگاه‌های هیدرومتری و تبخیر سنجی در حوضه‌ها ی کرج و جاجرود یکی از مشکلات این تحقیق می‌باشد. برای بدست آوردن نتایج دقیق تر لازم است که امکان ایستگاه‌های پیش‌تر استفاده شود لذا در پیشنهاد می‌شود که تعداد این ایستگاه‌ها را در سطح حوضه بیشتر شود.
5. منابع

1- رفاهی حسنی، ۱۳۷۸، فرسایش آبی و کنترل آن، انتشارات دانشگاه تهران، چاپ سوم
2- علی‌نجی‌نی بهلول، ۱۳۷۸، آب و هوای ایران، انتشارات دانشگاه پیام‌نور
3- علی‌زا دامینی، ۱۳۷۸، هوا و اقلیم شناسی، انتشارات دانشگاه فردوسی مشهد
4- علی‌زاده امین، ۱۳۸۱، حوضه آبریز و خصوصیات فیزیکی آنها، ماهنامه تخصصی مهندسی
رودرخانه، ش ۵
5- علی‌زاده امین، ۱۳۸۳، اصول هیدرولوژیکی کاربردی، انتشارات امام رضا (ع)
6- فتوحی رجبعلی، ۱۳۸۳، جزو واحده درسی اردوی هیدرولوژیکی
7- کاویانی محمدحسین، علی‌نجی‌نی بهلول، ۱۳۸۲، مبانی آب و هواشناسی، انتشارات سمت
8- گزارش‌های متن و تلفیق زیر حوضه‌های شمشک، آهار، افجه، گریمابر و وزارت جهاد کشاورزی

9- نادر مونتزا محمدحسین، ۱۳۸۱، زننده‌های واحده درسی اردوی هیدرولوژی
10- محمدحسین، ۱۳۸۵، جزو واحده درسی نوای اقلیمی ایران
11- محمدحسین، ۱۳۸۵، هیدرولوژی کاربردی، انتشارات دانشگاه تهران، ج ۱
12- محمدحسین، ۱۳۸۵، هیدرولوژی کاربردی، انتشارات دانشگاه تهران، ج ۲
13- محمدحسین مشاور دشت سیز فلات، گزارش‌های هیدرولوژی آهار، شمشک، گریمابر، افجه

امام، لورک، خزه‌وردیار و قونگر رودک، وزارت جهاد کشاورزی، ۱۳۸۲
14- محمدحسین، ۱۳۸۲، هیدرولوژی آهاری سطحی، انتشارات سمت، چاپ اول
15- محمدحسین، ۱۳۸۲، اردوی نظامی، انتشارات میلادی، چاپ وارد در جغرافیا، انتشارات پیام‌نور